Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch*

نویسندگان

  • Yong Chen
  • Quan Fang
  • Zilong Wang
  • Jennifer Y. Zhang
  • Amanda S. MacLeod
  • Russell P. Hall
  • Wolfgang B. Liedtke
چکیده

TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced itch elicited by capsaicin in a chronic itch model

Chronic itch (pruritus) is an important clinical problem. However, the underlying molecular basis has yet to be understood. The Transient Receptor Potential Vanilloid 1 channel is a heat-sensitive cation channel expressed in primary sensory neurons and involved in both thermosensation and pain, but its role in chronic itch remains elusive. Here, we for the first time revealed an increased inner...

متن کامل

Chronic itch development in sensory neurons requires BRAF signaling pathways.

Chronic itch, or pruritus, is associated with a wide range of skin abnormalities. The mechanisms responsible for chronic itch induction and persistence remain unclear. We developed a mouse model in which a constitutively active form of the serine/threonine kinase BRAF was expressed in neurons gated by the sodium channel Nav1.8 (BRAF(Nav1.8) mice). We found that constitutive BRAF pathway activat...

متن کامل

Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch

Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pir...

متن کامل

Involvement of TRPV4 in serotonin-evoked scratching

Several thermosensitive transient receptor potential channels (transient receptor potential vanilloid type-1, -3; transient receptor potential cation channel, subfamily A, member 1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an ...

متن کامل

Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 291  شماره 

صفحات  -

تاریخ انتشار 2016